Non-negative \& Convex Linear Combinations

Let $\vec{w}=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\cdots+\alpha_{n} \vec{v}_{n}$. The vector \vec{w} is called a non-negative linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ if

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \geq 0
$$

The vector \vec{w} is called a convex linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ if

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \geq 0 \quad \text { and } \quad \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1
$$

9 Let

$$
\vec{a}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \vec{b}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \quad \vec{c}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \vec{d}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \quad \vec{e}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] .
$$

9.1 Out of $\vec{a}, \vec{b}, \vec{c}, \vec{d}$, and \vec{e}, which vectors are
(a) linear combinations of \vec{a} and \vec{b} ?
(b) non-negative linear combinations of \vec{a} and \vec{b} ?
(c) convex linear combinations of \vec{a} and \vec{b} ?
9.2 If possible, find two vectors \vec{u} and \vec{v} so that
(a) \vec{a} and \vec{c} are non-negative linear combinations of \vec{u} and \vec{v} but \vec{b} is not.
(b) \vec{a} and \vec{e} are non-negative linear combinations of \vec{u} and \vec{v}.
(c) \vec{a} and \vec{b} are non-negative linear combinations of \vec{u} and \vec{v} but \vec{d} is not.
(d) \vec{a}, \vec{c}, and \vec{d} are convex linear combinations of \vec{u} and \vec{v}.

Otherwise, explain why it's not possible.

Let L be the set of points $(x, y) \in \mathbb{R}^{2}$ such that $y=2 x+1$.
10.1 Describe L using set-builder notation.
10.2 Draw L as a subset of \mathbb{R}^{2}.
10.3 Add the vectors $\vec{a}=\left[\begin{array}{l}-1 \\ -1\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\vec{d}=\vec{b}-\vec{a}$ to your drawing.
10.4 Is $\vec{d} \in L$? Explain.
10.5 For which $t \in \mathbb{R}$ is it true that $\vec{a}+t \vec{d} \in L$? Explain using your picture.

